Acta Crystallographica Section B
Structural
Science
ISSN 0108-7681

Petros Giastas, Konstantina Yannakopoulou and Irene M. Mavridis*

Institute of Physical Chemistry, National Center for Scientific Research 'Demokritos', Aghia
Paraskevi 153 10, Athens, Greece

Correspondence e-mail:
mavridi@chem.demokritos.gr

Molecular structures of the inclusion complexes β-cyclodextrin-1,2-bis(4-aminophenyl)ethane and β-cyclodextrin-4,4'-diaminobiphenyl; packing of dimeric $\boldsymbol{\beta}$-cyclodextrin inclusion complexes

The present investigation is part of an ongoing study on the influence of the long end-functonalized guest molecules DBA and BNZ in the crystal packing of β-cyclodextrin ($\beta \mathrm{CD}$) dimeric complexes. The title compounds are $2: 2$ host:guest complexes showing limited host-guest hydrogen bonding at the primary faces of the β CD dimers. Within the $\beta C D$ cavity the guests exhibit mutual $\pi \cdots \pi$ interactions and between $\beta \mathrm{CD}$ dimers perpendicular NH $\cdots \pi$ interactions. The DBA guest molecule exhibits one extended and two bent conformations in the complex. The BNZ guest molecule is not planar inside $\beta \mathrm{CD}$, in contrast to the structure of BNZ itself, which indicates that the cavity isolates the molecules and forbids the $\pi \cdots \pi$ stacking of the aromatic rings. NMR spectroscopy studies show that in aqueous solution both DBA and BNZ form strong complexes that have $1: 1$ stoichiometry and structures similar to the solid state ones. The relative packing of the dimers is the same in both complexes. The axes of two adjacent dimers form an angle close to 20° and have a lateral displacement $\simeq 2.45 \AA$, both of which characterize the screwchannel mode of packing. Although the $\beta \mathrm{CD} / \mathrm{BNZ}$ complex indeed crystallizes in a space group characterizing the latter mode, the β CD/DBA complex crystallizes in a space group with novel dimensions not resembling any of the packing modes reported so far. The new lattice is attributed to the three conformations exhibited by the guest in the crystals. However, this lattice can be transformed into another, which is isostructural to that of the $\beta \mathrm{CD} / \mathrm{BNZ}$ inclusion complex, if the conformation of the guest is not taken into account.

1. Introduction

The common cyclodextrins (CDs), obtained by enzymatic degradation of starch, are macrocycles composed of six, seven and eight α-1,4-linked-D-glucopyranose residues (α-, β - and $\gamma \mathrm{CD}$, respectively),

thus having the shape of truncated hollow cones (Szejtli, 1998). CDs are water soluble, since they are lined by a large number of hydroxy groups, three per glucose residue: one

Received 3 November 2002
Accepted 29 January 2003
primary, occupying the narrow end of the truncated cone, and two secondary, occupying its wider side. Along with their synthetic derivatives, CDs are used for micro encapsulation of organic molecules inside their relatively apolar cavity by forming inclusion compounds both in aqueous solutions and in the crystalline state (Harata, 1998). This property has been used extensively to solubilize and/or stabilize apolar/unstable molecules, especially drugs (Uekama et al., 1998). Onedimensional and two-dimensional NMR studies of CD inclusion complexes in aqueous solutions give invaluable information on the kinds of species present, as well as of their molecular structures, stoichiometry and formation constants. Although very frequently the complexes exist in more than one molecular structure in solution (Eliadou et al., 1999), the most stable form crystallizes. The factors contributing to the stabilization of CD host-guest complexes are van der Waals interactions and hydrogen bonding, depending on the nature of the guest molecules (Saenger, 1980). Therefore, it is very interesting to study and, if possible, to predict the molecular structure of the complexes and subsequently the molecular arrangement in the crystal.
$\beta C D$ is the most common of the natural CDs and its inclusion complexes are abundant. The majority of them crystallize as dimers formed by self-association of two $\beta \mathrm{CD}$ monomers (Mavridis et al., 1991) that enclose one, two and sometimes more molecules. The $\beta C D$ dimer is a very symmetrical entity that has the shape of a cylinder or rather a barrel with an elongated hydrophobic cavity. As has been shown by a detailed analysis of the hydrogen bonding in the $\beta C D$ dimer (Makedonopoulou \& Mavridis, 2000), the secondary hydroxy groups are involved in hydrogen bonding intramolecularly within the β CD monomers, as well as intermolecularly between monomers in order to form the dimer (only the secondary hydroxyls O 3 H), and with numerous water molecules at the exterior of the $\beta \mathrm{CD}$ barrel, thus they do not form hydrogen bonds with guest molecules in the interior of the cavity. The intra-dimer ring of the secondary hydroxyls, where the two monomers meet, is hydrophobic and $\beta C D$ dimers can host lipophilic guests that span the entire length of their cavity.

In the crystalline state there have been some attempts to analyze systematically available crystallographic data of $\alpha \mathrm{CD}$ (Saenger, 1985) and β CD complexes (Mentzafos et al., 1991). In β CDs the secondary hydroxyls are not influenced by the guest and form an invariant network of hydrogen bonds with neighboring dimers and water molecules in the outside (Le Bas \& Tsoucaris, 1994). On the other hand, although the primary hydroxy groups at the top and bottom of the barrel form a number of hydrogen bonds with adjacent barrels commonly observed in various complexes, their mutual interactions are also influenced by the presence of the guest in that region. In the dimeric β CD complexes a semi-invariant network of hydrogen bonds is formed that connects each dimer to other dimers either directly or through water molecules co-crystallized around them. The result is the formation of infinite two-dimensional layers (Mentzafos et al., 1991; Le Bas \& Tsoucaris, 1994) of C-centered or pseudo C-centered
geometry, depending on the space group, with two orthogonal axes of dimensions close to 19 and $24 \AA$. Therefore, we can claim that the $\beta \mathrm{CD}$ dimer is an entity maintaining its integrity irrespective of the nature of the guest that forms practically invariant C -centered two-dimensional layers. The guest emerging from the primary faces plays a crucial role in the association of these two-dimensional layers to form the crystal. The layers have the primary faces of the $\beta \mathrm{CD}$ dimers, and consequently the parts of guests located there, exposed to the solvent. It is thus obvious that they associate through primary hydroxy groups, water and/or the guest molecule(s) to form the three-dimensional lattice. Limited packing patterns of dimeric β CD complexes have been observed, classified as
(i) channel (CH),
(ii) screw-channel (SC),
(iii) chessboard (CB) and
(iv) intermediate (IM) (Mentzafos et al., 1991).

Complexes belonging to the same mode are isostructural, an important regularity that allows the determination of their crystal packing just by knowledge of their unit cell.

The present investigation is one in a series of articles involving systematic studies of the structure of cyclodextrin complexes with long end-functonalized guest molecules, i.e. amino acids (Eliadou et al., 1999), dicarboxylic acids (Makedonopoulou et al., 1999; Makedonopoulou \& Mavridis, 2000) and diamines (Rontoyianni \& Mavridis, 1999; Giastas et al., 2003). The guests under study presently are 1,2-bis(4-aminophenyl)ethane (DBA) and 4, 4^{\prime}-diaminobiphenyl (BNZ).

BNZ
(II)

The guest's end-groups induce the same packing on the twodimensional C-centered layers of the $\beta C D$ dimers, but the compounds crystallize in different space groups. This behavior is due to the guest molecule of one complex being trapped in different conformations in two adjacent layers. This fact results in a space group and cell dimensions that are observed for the first time in dimeric β CD complexes [although it seems that an isostructural complex, β CD/diacetamate (Dodds, 1999) exists]. However, it is shown that the packing modes of the two complexes are equivalent.

2. Experimental

2.1. Materials

β CD was a product of Fluka. 1,2-Bis(4-aminophenyl)ethane (Aldrich) was purified using a short silica gel column and

Table 1
Experimental details.

	DBA	BNZ
Crystal data		
Chemical formula	$\mathrm{C}_{112} \mathrm{H}_{127.17} \mathrm{~N}_{4} \mathrm{O}_{88.08}$	$\mathrm{C}_{108} \mathrm{H}_{112} \mathrm{~N}_{4} \mathrm{O}_{94.72}$
M_{r}	2938.71	2981.62
Cell setting, space group	Monoclinic, C2	Monoclinic, $P 2_{1}$
$a, b, c(\AA)$	$\begin{aligned} & 19.319(2), 24.19(6), \\ & 33.315(7) \end{aligned}$	$\begin{aligned} & 15.394 \text { (7), } 31.995(12), \\ & 15.621(7) \end{aligned}$
$\beta\left({ }^{\circ}\right.$)	103.924 (14)	103.738 (15)
$V\left(\AA^{3}\right)$	15111 (5)	7473 (5)
Z	4	2
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.292	1.325
Radiation type	$\mathrm{Cu} K \alpha$	$\mathrm{Cu} K \alpha$
No. of reflections for cell parameters	20	30
θ range (${ }^{\circ}$)	9.7-17.2	10.0-20.3
$\mu\left(\mathrm{mm}^{-1}\right)$	1.00	1.05
Temperature (K)	293 (2)	293 (2)
Crystal form, color	Prismatic, colorless	Prism, colourless
Crystal size (mm)	$0.6 \times 0.4 \times 0.3$	$0.4 \times 0.4 \times 0.4$
Data collection		
Diffractometer	SYNTEX P21	SYNTEX P21
Data collection method	$\theta / 2 \theta$	$\theta / 2 \theta$
Absorption correction	None	None
No. of measured, independent and observed parameters	10 112, 10 105, 6985	9299, 9160, 6482
Criterion for observed reflections	$I>2 \sigma(I)$	$I>2 \sigma(I)$
$R_{\text {int }}$	0.041	0.038
$\theta_{\text {max }}\left({ }^{\circ}\right)$	55.1	55.0
Range of h, k, l	$0 \Rightarrow h \Rightarrow 20$	$0 \Rightarrow h \Rightarrow 15$
	$0 \Rightarrow k \Rightarrow 25$	$0 \Rightarrow k \Rightarrow 32$
	-35 $\Rightarrow l \Rightarrow 35$	$-16 \Rightarrow l \Rightarrow 16$
No. and frequency of standard reflections	3 every 97 reflections	3 every 97 reflections
Refinement		
Refinement on	F^{2}	F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.083,0.257,1.06$	0.087, 0.259, 1.02
No. of relections	10105 reflections	9160 reflections
No. of parameters	1383	1111
H -atom treatment	Mixture of independent and constrained refinement	Mixture of independent and constrained refinement
Weighting scheme	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1564 P)^{2}+\right. \\ & 26.9454 P], \text { where } \\ & P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{aligned}$	$\begin{gathered} w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1439 P)^{2}+\right. \\ 15.5108 P], \text { where } \\ P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{gathered}$
$(\Delta / \sigma)_{\text {max }}$	0.188	0.016
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.52, -0.44	0.41, -0.33
Absolute structure	Flack (1983)	Flack (1983)
Flack parameter	0.9 (4)	0.5 (4)

Computer programs: Crystal logic (Strouse, 2002); DIRDIF94 (Beurskens et al., 1994; Hamilton \& Chen (1988a); SHELXL97 (Sheldrick, 1997); Jones \& Kjeldgaad (1993); Molscript (Kraulis, 1991); ORTEPII (Johnson, 1976).
(spin-lock) time 350 ms at a field of $\simeq 2 \mathrm{kHz}$. In all spectra the internal water peak at 300 K was the reference frequency. Titration (mole-ratio method) of a $1.9 \mathrm{~m} M$ solution of $\beta \mathrm{CD}$ in $\mathrm{D}_{2} \mathrm{O}$ with DBA, and of a 2.7 mM solution of $\beta \mathrm{CD}$ in $\mathrm{D}_{2} \mathrm{O}$ with BNZ , resulted in measurable chemical shift displacements of the $\beta C D$ cavity protons H3 or H5 at each concentration of added guest. Fitting of the data to the equation that describes $1: 1$ host-guest association in fast exchange (Eliadou et al., 1999), using the GraphPad Prism software, provided the values of the binding constants for the two host-guest systems. In the $\beta \mathrm{CD} / \mathrm{DBA}$ complex there were considerable solubility problems; therefore, good curve fitting was obtained only with a reduced actual concentration of the added guest. The corresponding K value obtained is, therefore, only indicative.

2.3. Crystallization of $\beta C D / 1,2-b i s(4-$ aminophenyl)ethane (DBA) inclusion complex

The complex was prepared by adding 1,2-bis(4-aminophenyl)ethane (0.0126 mmol) to an aqueous solution of $\beta \mathrm{CD}$ (0.0126 mmol). The precipitant was redissolved in water at 343 K and the solution was allowed to return to room temperature over a period of 6 d , at the end of which prismatic colorless crystals were formed.

2.4. Crystallization of $\boldsymbol{\beta C D} / 4, \mathbf{4}^{\prime}$ diaminobiphenyl (BNZ) inclusion complex

The crystals were prepared by adding 0.0641 mmol of $4,4^{\prime}$-diaminobiphenyl and 0.0618 mmol of $\beta \mathrm{CD}$ to 1.6 ml of water, where the guest
chloroform as eluent. 4,4'-Diaminobiphenyl (Panreac) was used without further treatment. Deuterated solvents were purchased from Aldrich.

2.2. Measurements of binding constants by NMR in aqueous solution

NMR spectra were recorded on an Avance DRX 500 MHz spectrometer using standard pulse programs. Two-dimensional ROESY spectra were acquired with presaturation of the residual water signal using the TPPI method, and mixing
existed as a suspension along with undissolved β CD. Upon storing the reaction mixture in a closed vessel for 5 d at 355 K colorless crystals were formed.

2.5. X-ray crystallography

The chosen single crystals of both inclusion complexes were sealed into glass capillaries with mother liquor. Diffraction data were collected on a SYNTEX diffractometer equipped with a Rigaku rotating anode and a graphite monochromator. The data were corrected for Lorentz and polarization effects.

X-ray data and refinement details are summarized in Table 1. ${ }^{\mathbf{1}}$ Least-squares refinement on F^{2} was carried out using the program SHELXL97 (Sheldrick, 1997).
2.5.1. β CD/DBA inclusion complex. The structure was solved by the molecular replacement method (Beurskens et al., 1994) using the $\beta C D$ skeleton coordinates in the complex $\beta C D / Z-7$-tetradecenal (Yannakopoulou et al., 2002). The remaining host atoms, as well as the guest and co-crystallized water molecules, were found in subsequent difference-Fourier maps. The structure was refined by full-matrix least-squares refinement based on F^{2} (Table 1). Anisotropic refinement was applied only to non-disordered O atoms, the C6 atoms of the β CD host and most water O atoms. During the refinement four hydroxy O atoms of the primary side (two on each host monomer) were found to be disordered. H atoms added at calculated positions to the C and O atoms, except for the disordered ones, were assigned $U_{\text {eq }}=1.3 U_{\text {eq }}^{\prime}$ of the corresponding atom to which they are bonded and were refined by the riding model.
2.5.2. $\beta C D / B N Z$ inclusion complex. The structure was solved with the isomorphous replacement method using the skeleton coordinates of a $\beta \mathrm{CD}$ molecule of the complex $\beta \mathrm{CD} /$ (R)-(-)-fenoprofen clathrate hydrate (Hamilton et al., 1988a). The remaining atoms as well as the guest and the co-crystallized water molecules were found in subsequent differenceFourier maps. During refinement five primary hydroxy O atoms were found to be disordered (three on monomer A and two on monomer B). The structure was refined anisotropically for all the non-H atoms by full-matrix least-squares refinement based on F^{2} (Table 1). By the end of the refinement some H atoms were located by difference-Fourier maps and the remainder were added at calculated positions to the C and O atoms, except for the disordered ones. H atoms were assigned $U_{\text {eq }}=1.3 U_{\text {eq }}^{\prime}$ of the corresponding atom to which they are bonded and were refined by the riding model.

3. Results and discussion

3.1. β CD/1,2-bis(4-aminophenyl)ethane (DBA) inclusion complex

3.1.1. Stoichiometry, binding and structure in aqueous solution. DBA readily complexes with β CD in aqueous solution, as indicated by the observation of large chemical shifts of the cavity protons in the ${ }^{1} \mathrm{H}$ NMR spectra and the detection of intermolecular interactions in the ROESY spectrum (Giastas et al., 2003). The stoichiometry of the crystalline complex was found to be 1:1 (dissolution in DMSO and integration of the host-guest signals in the ${ }^{1} \mathrm{H}$ NMR spectra). The same result was obtained using the mole-ratio (titration) method for the complex formed in solution. The aqueous solubility of the adduct formed was limited and the titration ended before reaching the $1: 1$ ratio; however, it is obvious from the data points obtained (Fig. 1) that the chemical shift changes

[^0]increase past the 0.5 mole-ratio value and curve down as the ratio approaches $1: 1$. Fitting of the data to the equation for $1: 1$ stoichiometry based on fast exchange of the host between free and complexed states in the NMR timescale, as described previously (Botsi et al., 1995; Eliadou et al., 1999), affords an estimated binding constant of $2700(500) \mathrm{M}^{-1}\left(R^{2}=0.9744\right)$. The two-dimensional ROESY spectra of β CD/DBA have

Figure 1
Mole-ratio plots versus chemical shift changes of the cavity proton H3 ($300 \mathrm{~K}, \mathrm{D}_{2} \mathrm{O}$).

Figure 2
Two-dimensional ROESY spectra in $\mathrm{D}_{2} \mathrm{O}$ of (a) $\beta \mathrm{CD} / \mathrm{DBA}, 298 \mathrm{~K}$; (b) β CD/BNZ, 300 K .

(a)

(b)

Figure 3
Conformation and numbering scheme of the β CD/DBA complex: (a) $\beta \mathrm{CD} ;(b)$ the three conformations of DBA observed.
shown strong interactions of the $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$ group of DBA with all cavity protons, indicating
(i) threading of DBA inside the cavity, and
(ii) possible bending of the ethylene part (Giastas et al., 2003).

Fig. 2(a) shows slightly weaker interactions of $H a$ with the cavity protons H3 and H5 and stronger interactions with H6,6' than the corresponding interactions of $H b$, indicating that the $H a \mathrm{H}$ atoms are located at the rims of the $\beta \mathrm{CD}$ cup. This information, combined with the 1:1 stoichiometry, suggests a structure in solution in which the guest in its entire length hides inside the host and, despite the flexibility of the ethylene part, forms a strong complex.
3.1.2. Structure in the crystalline state. X-ray analysis of the crystalline complex provided the supramolecular structure of the adduct. The β CD host, forming head-to-head dimers, encloses two guest molecules. There are two independent monomeric hosts (A and B) in the asymmetric unit. Two crystallographically independent β CD dimers arise by the twofold crystallographic axis. The numbering scheme for the β CD molecules is given in Fig. 3(a) (Johnson, 1976). C (A or $B) m n$ and $\mathrm{O}(A$ or $B) m n$ denote the m th atom within the nth glucosidic residue ($\mathrm{G} n$) of the crystallographically independent $\beta \mathrm{CD}$ molecules A and B. Moreover, depending on the conformation of the guest molecules (guest \mathbf{a}, \mathbf{b} and \mathbf{c}, Fig. 3b), three types of complexes are observed in the crystal structure. The following explain the reason for such a variation: The present structure belongs to the $C 2$ space group, but unlike the other $\beta \mathrm{CD}$ dimeric complexes crystallizing in the same space

Figure 4
Packing of the β CD/DBA complex.

Table 2
Cell dimensions of the packing modes of dimeric β CD complexes.

Packing mode	Space group	$a(\AA)$	$b(\AA)$	$c(\AA)$	$\alpha\left({ }^{\circ}\right)$	$\beta\left({ }^{\circ}\right)$	$\gamma\left({ }^{\circ}\right)$	$V / \beta \mathrm{CD}\left(\AA^{3}\right)$
CH	$P 1$	15.5	15.6	15.7	100.0	101.0	103.7	1756
CH	$C 2$	19.2	24.6	15.8		109.5		1760
IM	$P 1$	18.0	15.4	15.5	103.1	117.1	104.3	1860
CB	$C 222_{1}$	19.2	24.4	32.7			1010	
SC	$P 2_{1}$	15.3	32.5	15.4		102.1	1870	
β CD/DBA (SC)	$C 2\left(P 2_{1}\right)$	19.319	24.190	33.315		103.92	1889	

Table 3
Conformations of the macrocycles.
$D=\mathrm{O} 4 n \cdots \mathrm{O} 4(n+1)$ distances; $\varphi=\mathrm{O} 4(n-1) \cdots \mathrm{O} 4 \cdots \mathrm{O} 4(n+1)$ angles; $d=$ deviations (\AA) from the leastsquares optimum plane of the seven $\mathrm{O} 4 n$ atoms; $\alpha=$ tilt angles between the optimum O4n plane and the mean planes through atoms $\mathrm{O} 4(n-1), \mathrm{C} 1 n, \mathrm{C} 4 n, \mathrm{O} 4 n$ (with s.u. values in parentheses). $D_{3}=$ intramolecular hydrogen-bond distances between atoms $\mathrm{O} 2 n \cdots \mathrm{O} 3(n-1)$.
(a) β-CD/DBA inclusion complex.

Residue	$D(\AA)$	$\varphi\left({ }^{\circ}\right)$	$d(\AA)$	$\alpha\left({ }^{\circ}\right)$	$D_{3}(\mathrm{\AA})$	$\begin{aligned} & \text { Torsion angle }\left({ }^{\circ}\right) \\ & \text { O5n-C5n-C } 6 n-\mathrm{O} 6 n \end{aligned}$
Molecule A						
G1	4.38 (5)	130.3 (1)	0.008 (7)	5.5 (3)	2.72 (2)	-67 (1)
						77 (1)
G2	4.30 (0)	124.2 (9)	0.000 (8)	10.0 (4)	2.79 (9)	-66 (1)
G3	4.45 (2)	130.8 (4)	-0.012 (9)	10.4 (2)	2.84 (0)	-68 (1)
G4	4.34 (0)	129.9 (2)	0.000 (4)	7.9 (0)	2.87 (4)	-67 (1)
						47 (3)
G5	4.36 (7)	127.0 (1)	0.024 (6)	12.7 (5)	2.80 (5)	-64 (1)
G6	4.31 (7)	128.0 (2)	-0.028 (8)	10.2 (6)	2.80 (2)	-67 (1)
G7	4.45 (6)	129.6 (1)	0.007 (4)	10.2 (4)	2.79 (4)	-64 (1)
Molecule B						
G1	4.37 (1)	128.1 (1)	0.026 (7)	9.9 (1)	2.75 (5)	-63 (1)
G2	4.44 (6)	130.1 (9)	0.022 (8)	8.7 (7)	2.85 (3)	66 (1)
G3	4.34 (6)	128.2 (4)	0.003 (4)	10.2 (9)	2.77 (2)	-62 (1)
						67 (1)
G4	4.34 (4)	126.9 (3)	0.008 (4)	6.8 (0)	2.84 (1)	-72 (1)
G5	4.42 (4)	129.5 (5)	-0.004 (0)	3.8 (9)	2.80 (9)	-64 (1)
G6	4.36 (5)	129.9 (5)	0.000 (5)	8.4 (2)	2.84 (5)	-67 (1)
G7	4.34 (7)	127.0 (1)	-0.012 (1)	5.9 (8)	2.74 (9)	-62 (1)
						48 (1)

(b) $\beta \mathrm{CD} / \mathrm{BNZ}$ inclusion complex.

Residue	$D(\AA)$	$\varphi\left({ }^{\circ}\right)$	$d(\AA)$	$\alpha\left({ }^{\circ}\right)$	$D_{3}(\mathrm{\AA})$	Torsion angle (${ }^{\circ}$) $\mathrm{O} 5 n-\mathrm{C} 5 n-\mathrm{C} 6 n-\mathrm{O} 6 n$
Molecule A						
G1	4.34 (4)	127.4 (0)	-0.006 (7)	7.4 (3)	2.85 (1)	-70 (1)
G2	4.47 (3)	130.6 (6)	0.019 (8)	8.7 (6)	2.79 (7)	-66 (1)
						56 (6)
G3	4.26 (7)	128.2 (4)	0.002 (7)	12.2 (7)	2.77 (3)	-61 (1)
G4	4.38 (8)	127.2 (0)	-0.015 (8)	5.2 (3)	2.78 (8)	-63 (1)
						67 (3)
G5	4.39 (8)	129.0 (8)	-0.009 (7)	5.2 (9)	2.76 (9)	-61 (1)
G6	4.37 (9)	129.7 (7)	0.040 (0)	11.6 (1)	2.83 (4)	65 (1)
G7	4.32 (6)	127.6 (1)	-0.030 (4)	8.8 (0)	2.76 (9)	-66 (1)
						69 (2)
Molecule B						
G1	4.40 (0)	126.8 (4)	0.015 (6)	8.9 (6)	2.80 (4)	-55 (1)
						51 (4)
G2	4.31 (1)	128.9 (3)	0.042 (9)	10.1 (7)	2.84 (1)	-62 (1)
						56 (3)
G3	4.47 (2)	129.5 (4)	-0.065 (3)	5.5 (8)	2.79 (0)	-66 (1)
G4	4.30 (2)	128.9 (8)	0.017 (7)	11.6 (7)	2.75 (3)	69 (1)
G5	4.37 (6)	125.5 (5)	0.031 (3)	9.6 (1)	2.82 (3)	-68 (1)
G6	4.43 (1)	131.1 (1)	-0.017 (9)	7.8 (7)	2.81 (9)	-69 (1)
G7	4.30 (6)	128.9 (6)	-0.024 (4)	13.2 (3)	2.83 (7)	-63 (1)

group (Table 2) it exhibits a c crystallographic axis of double length ($\simeq 33 \AA$). This is because, unlike all $\beta \mathrm{CD}$ dimeric complexes reported so far, there are two types of $\beta C D$ C-centered layers of dimers (corresponding to monomers A and B) packed on top of each other. These layers of dimers differ in the guest conformation (Fig. 4). In the middle layer the guest is found in an extended conformation (guest a), whereas in the top and bottom the guest is in a puckered conformation, disordered over two positions (guest b and \mathbf{c}). The sevenfold axis of dimer A forms an angle of 23° with the \mathbf{c} axis (Fig. 4, Jones \& Kjeldgaad, 1993), whereas the axis of dimer B forms an angle of 3°. The relative angle between dimers A and B is 20° and their lateral displacement $\simeq 2.45 \AA$. As a result of the described stacking, the β CD dimers do not pack in the channel mode (CH) as in the corresponding complexes of space group $C 2$, their packing resembling rather the screw-channel mode (SC).

3.2. Geometry of the host molecules

The host molecules possess near sevenfold symmetry, the pyranose rings having the ${ }^{4} C_{1}$ conformation: As shown in Table 3(a), the values of the angles between the glucosidic O atoms $\mathrm{O} 4 n$ do not differ significantly from 128.5°, the angle of the regular heptagon, while the glucose units tilt slightly towards the sevenfold axis. The deviations (d) of the $\mathrm{O} 4 n$ atoms from their optimum plane are close to zero. The conformation of each $\beta C D$ macrocycle is stabilized through intramolecular hydrogen bonds connecting the $\mathrm{O} 3 n$ and $\mathrm{O} 2(n+1)$ atoms of neighboring glucosidic units [average O3n‥O2(n+1) distances 2.80 (5) A]. Their angles, $\mathrm{C} 3 n-$ $\mathrm{O} 3 n \cdots \mathrm{O} 2(n+1)$ [average $116.4(2)^{\circ}$] and $\mathrm{O} 3 n \cdots \mathrm{O} 2(n+1)-\mathrm{C} 2(n+1)$ [average $117.3(3)^{\circ}$], lie within the normal values for hydrogen bonds. The $\beta C D$ dimer is formed via $\mathrm{O} A 3 n \cdots \mathrm{O} A^{\prime} 3(8-n) \quad$ hydrogen bonds (Makedonopoulou \& Mavridis, 2000) with an average distance of

Table 4
Hydrogen bonds of the guests' amine groups (bold indicates hydroxy groups pointing inwards).

Molecule a	Distance (A)	$\mathrm{C}-\mathrm{N} \cdots \mathrm{O}\left({ }^{\circ}\right.$)	$\mathrm{N} \cdots \mathrm{O}-\mathrm{C}\left({ }^{\circ}\right)$
(a) $\beta \mathrm{CD} / \mathrm{DBA}$ inclusion complex			
$\mathrm{N} 1 A \cdots \mathrm{O} 66 B 2$	2.4 (1)	133 (2)	
N1A . . O65B	2.79 (3)	141 (1)	
$\mathrm{N} 1 A \cdots \mathrm{O} 66 B 4$	3.2 (1)	140 (1)	
$\mathrm{N} 1 C \cdots \mathrm{OB67b}$	3.24 (4)	115 (1)	122 (1)
(b) $\beta \mathrm{CD} / \mathrm{BNZ}$ inclusion complex			
N1A . . OB64	3.23 (3)	112 (1)	107 (1)
$\mathrm{N} 1 B \cdots \mathrm{O} 3$ A3	2.6 (1)	146 (3)	
$\mathrm{N} 1 B \cdots \mathrm{O} 626$	3.15 (7)	83 (2)	126 (4)

2.82 (6) and 2.84 (9) \AA for host monomers A and B, respectively. The angles $\mathrm{C} A 3 n-\mathrm{O} A 3 n \cdots \mathrm{OB} 3(8-n)$ and $\mathrm{O} A 3 n \cdots \mathrm{OB} 3(8-n)-\mathrm{CB3}(8-n)$ have mean values of 118.5 (6) and $118.4(3)^{\circ}$, respectively.

The primary hydroxy groups show a variety of conformations (Table 3a): residue G2 of monomer B exhibits (+)gauche conformation and points inwards. Monomer A has two disordered hydroxy groups, one in residue G1 with a major (-)-gauche conformation (83%) and a minor (+)-gauche pointing inwards, another in residue G 4 , where the conformation pointing inwards is the major one (57%). Monomer B also has two disordered hydroxy groups on residues G3 and G7, their major conformations (57 and 69% respectively) pointing outwards. The remaining hydroxy groups have the (-)-gauche conformation and point outwards. Inward pointing hydroxyls form hydrogen bonds mainly with adjacent dimers, thus stabilizing the lattice (see below).
3.2.1. Guest geometry and interactions with its environment. Two guest molecules are enclosed within each $\beta C D$ dimer, but as mentioned above, there are two types of dimers, aligned in layers, differing in the guests' conformations (Fig. 4): guest \mathbf{a} in the middle layer, and the disordered guest, \mathbf{b} and \mathbf{c}, above and below. One of guest \mathbf{c} 's N atoms resides on the twofold axis; therefore, it can exist only in one monomer of the dimer. Thus, in this dimeric layer the two β CD monomers have the guests in different conformations \mathbf{b} and \mathbf{c}. One phenyl ring of guest \mathbf{b} is related by the twofold axis to a phenyl ring of c, whereas the others are different. The dihedral angles between the phenyl rings are 12 (1), 56.0 (9) and 57 (1) ${ }^{\circ}$ for guests a,b and \mathbf{c}, respectively. Guest a's phenyl rings form angles of 75.4 (7) and $66.7(5)^{\circ}$ with the planes of the glucosidic O4 atoms of the dimer. The corresponding angles for guest b are 47.7 (4) and 36.8 (7) ${ }^{\circ}$ and for guest $\mathbf{c} 47.7$ (4) and $38.2(8)^{\circ}$. The trans conformation of guest a compares well with the determined conformations of 1,2-diarylethanes that compose the skeleton of the present guest molecule (Ross \& Wardell, 1994; Kahr et al., 1995): The planar phenyl rings occupy almost parallel planes that are approximately at right angles to the connecting aliphatic moiety. The value of the central $\mathrm{CH}_{2}-\mathrm{CH}_{2}$ bond is $1.56 \AA$ and the mean value of the $\mathrm{C}(\mathrm{Ar})-\left(\mathrm{CH}_{2}\right)$ bonds is $1.50 \AA$. The puckered conformation observed in the complex is a less stable gauche conformation.

The corresponding lengths for the central and flanking bonds are 1.61 and $1.47 \AA$, respectively. The central bond lengths are probably overestimated because no H atoms were included in the refinement (Kahr et al., 1995), more so in the case of the bent guest which is disordered.

Within the β CD dimer cavities the guest molecules exhibit $\pi \cdots \pi$ interactions (Fig. 4), which are weaker (mean distance $3.69 \AA$ A) for guest \mathbf{a} than for guests \mathbf{b} and \mathbf{c} (mean distance $3.53 \AA$). Between β CD dimers the guests approach each other almost vertically. The number of interactions of the guests with their environment is rather limited: The close contacts of the guests' amino groups are shown in Table 4(a). The amino nitrogen $\mathrm{N} 1 A$ of guest \mathbf{a} (emerging from the primary side and pointing towards the solvent) forms one strong and two weak hydrogen bonds with water molecules, whereas the corresponding N atom of guest \mathbf{c} interacts weakly with primary hydroxy groups, two of them pointing inwards (Fig. 5; Kraulis, 1991). Finally, the amino group of guest \mathbf{b}, emerging from the other primary side of $\beta \mathrm{CD}$ dimer B, points towards the cavity of adjacent dimer A almost vertically to guest a's phenyl ring (smallest distance $\mathrm{N} 1 B \cdots \mathrm{C} 5 A=2.96 \AA$). Thus, along the

Figure 5
Details of the interdimer region between dimers A and B of CD/DBA. (a) The interaction involving the amino $\mathrm{N} 1 A$ atom of guest \mathbf{a}, and (b) the interaction involving the corresponding N atom of guest \mathbf{c}.

Table 5
Direct hydrogen bonds of primary hydroxy groups between β CD dimers (bold indicates hydroxy groups pointing inwards).

Omn...) $\mathrm{Om}^{\prime} n^{\prime}$	$\begin{aligned} & \text { Distance }(\AA \text { A) } \\ & \text { Omn } \cdots m^{\prime} n^{\prime} \end{aligned}$	Angle (${ }^{\circ}$) Cmn-Omn...O $m^{\prime} n^{\prime}$	$\begin{aligned} & \text { Angle }\left({ }^{\circ}\right) \\ & \text { Omn } \cdot{ }^{\circ} m^{\prime} n^{\prime}-\mathrm{C}^{\prime} n^{\prime} \end{aligned}$
(a) $\beta \mathrm{CD} / \mathrm{DBA}$ inclusion complex			
$\mathrm{O} A 25 \cdots \mathrm{O} A 27^{\text {i }}$	2.75 (1)	112.4 (6)	106.5 (6)
$\mathrm{O} A 67 \cdots \mathrm{O} A 6{ }^{\text {ii }}$	2.80 (1)	106.9 (7)	123.1 (7)
OA65...OA61 ${ }^{\text {iii }}$	3.17 (3)	115 (1)	142 (1)
$\mathrm{OB} 25 \cdots \mathrm{OB27}{ }^{\text {iv }}$	2.76 (1)	109.8 (7)	107.9 (6)
$\mathrm{OB} 67 a \cdots \mathrm{OB63a}{ }^{\text {v }}$	3.0 (1)	113 (1)	131 (1)
OB65 . ${ }^{\text {O }}$ O61 $1^{\text {ii }}$	2.86 (1)	109.1 (8)	130.6 (7)
OA62...OB63b ${ }^{\text {iii }}$	2.61(2)	111 (1)	146 (1)
OA62 \cdots OB62 ${ }^{\text {i }}$	2.68(1)	130(1)	102.3(7)
(b) $\beta \mathrm{CD} / \mathrm{BNZ}$ inclusion complex			
OA66 \cdots - ${ }^{\text {a }} 65^{\text {vi }}$	2.66 (1)	100.6 (9)	125 (1)
OA67b $\cdots \mathrm{O} 65^{\text {vi }}$	2.47 (4)	147 (2)	107 (1)
OA65 . ${ }^{\text {O }}$ A $62 a^{\text {vii }}$	2.86 (1)	131.4 (8)	108.7 (8)
OB63 . . OB66 ${ }^{\text {vii }}$	2.77 (1)	107.5 (8)	124.9 (9)
OB23.. OA22 ${ }^{\text {vii }}$	2.76 (1)	109.1 (6)	112.2 (7)
$\mathrm{O} A 24 \cdots \mathrm{O} 21^{\text {viii }}$	2.80 (1)	104.5 (6)	112.8 (7)
$\mathrm{O} A 64 a \cdots \mathrm{O} A 67 a^{\text {viii }}$	2.92 (2)	111.5 (9)	129 (1)

(i) $\frac{3}{2}-x,-\frac{1}{2}+y, 2-z$; (ii) $-\frac{1}{2}+x, \frac{1}{2}+y, z$; (iii) x, y, z; (iv) $\frac{3}{2}-x, \frac{1}{2}+y, 1-z$; (v) $-\frac{1}{2}+x,-\frac{1}{2}+y, z$; (vi) $-x, \frac{1}{2}+y,-z$; (vii) $-1+x, y, z$; (viii) $x, y, 1+z$.

The chemical shift changes of the cavity proton H3 upon increasing (BNZ) observed here are nearly twice those for $\beta \mathrm{CD} / \mathrm{DBA}$ without the formation of a precipitate. A binding curve is obtained which becomes level near the $1: 1$ mole ratio, also suggesting a $1: 1$ complex. Fitting this data set to the corresponding equation provides a value for the binding constant of $3000(700) \mathrm{M}^{-1}\left(R^{2}=\right.$ 0.9986), somewhat larger than that of $\beta \mathrm{CD} / \mathrm{DBA}$, a result of better solubility of the complex and probably a better localization of BNZ, compared with DBA, inside the β CD cavity. The corresponding ROESY spectrum (Fig. 2b) shows that the cavity proton H 5 has become extensively deshielded and overlaps H2, and that benzidine's protons $H a$ interact stronger with H6, 6^{\prime} than H3, indicating that here also the amino groups are located at the edges of the host and all of the BNZ molecule is included.
3.4.2. Structure in the crystalline state. There are two independent host molecules $(A$ and $B)$ in the asymmetric unit forming head-to-head dimers.
channel the guests exhibit alternate parallel $\pi \cdots \pi$ and vertical NH $\cdots \pi$ interactions (Fig. 4).

3.3. Hydrogen-bonding network and solvent molecules

There are eight direct hydrogen bonds among hydroxy groups of adjacent host dimers (Table $5 a$), of which two bind dimers A and B along the c axis and six bind hydroxy groups in the two-dimensional layers, three along the $\mathbf{a}+\mathbf{b}$ direction $(\mathrm{O} A 25 \cdots \mathrm{O} A 27, \mathrm{O} A 67 \cdots \mathrm{O} A 63$ and $\mathrm{O} A 65 \cdots \mathrm{O} A 61 b)$ and three along the $\mathbf{a}-\mathbf{b}$ direction (OB25 $\cdots \mathrm{OB} 27$, $\mathrm{O} B 67 a \cdots \mathrm{O} B 63 a$ and $\mathrm{O} B 65 \cdots \mathrm{O} B 61)$. Four of the above bonds, $\mathrm{O} A 25 \cdots \mathrm{O} A 27, \quad \mathrm{O} A 67 \cdots \mathrm{O} A 63, \quad \mathrm{O} B 25 \cdots \mathrm{O} B 27$ and $\mathrm{OB} 67 a \cdots \mathrm{OB63a}$, are observed in all dimeric CD complexes irrespective of the crystal packing.

There are 18.08 (6) water molecules in the asymmetric unit distributed over 53 sites around the β CD dimers and 45 of them are within hydrogen-bonding distance of O atoms of the hydroxy groups, as shown in Table 6. The water sites have been labeled from the number of the closest O atom to which they are hydrogen bonded. Hydrogen-bonding distances up to $3.25 \AA$ and angles $\mathrm{C}-\mathrm{O}(\mathrm{H}) \cdots \mathrm{O}\left(\right.$ water) up to 145° are assumed in order to compare with other published structures with related guest molecules. The angle range, although quite wide, is justifiable because of the usual disorder accompanying water molecules and the inability to locate their H atoms. Water molecules at eight positions interact only among themselves.

3.4. $\beta C D / 4,4^{\prime}$-diaminobiphenyl (BNZ) inclusion complex

3.4.1. Stoichiometry, binding and structure in aqueous solution. In a way analogous to DBA, benzidine (BNZ) enters inside the β CD host and forms a water-soluble complex that allows a complete set of titration data to be collected (Fig. 1b).

Figure 6
Conformation and numbering scheme of the β CD/BNZ complex: (a) β CD; (b) BNZ.

Table 6
Hydrogen bonds between β CD hydroxyls, $\mathrm{O} A(B) n m$, and water molecules, $\mathrm{Onm} A(B)$, in the $\beta \mathrm{CD} /$ DBA inclusion complex.

Molecule A	$\begin{aligned} & \mathrm{O} \cdots \mathrm{O} \\ & \text { distance }(\AA) \end{aligned}$	$\begin{aligned} & \mathrm{C}-\mathrm{O} \cdots \mathrm{O} \\ & \text { angle }\left(^{\circ}\right) \end{aligned}$	Molecule B	$\begin{aligned} & \mathrm{O} \cdots \mathrm{O} \\ & \text { distance }(\AA) \end{aligned}$	$\begin{aligned} & \mathrm{C}-\mathrm{O} \cdots \mathrm{O} \\ & \text { angle }\left({ }^{\circ}\right) \end{aligned}$
$\mathrm{O} A 21 \cdots \mathrm{O} 21 A$	2.66 (8)	112 (1)	OB21..OO21B1	2.64 (2)	109.1 (8)
$\mathrm{O} A 21 \cdots \mathrm{O} 35 A$	2.80 (4)	113 (1)	$\mathrm{OB21} \mathrm{\cdots O} \mathrm{O} 21 \mathrm{~B} 2$	2.82 (5)	99 (1)
			OB21..O35B	2.88 (7)	110 (1)
OA22 . $\mathrm{O} 22 A$	2.61 (3)	102 (1)	OB22 . $\mathrm{O} 22 B$	2.78 (2)	105 (1)
$\mathrm{O} A 23 \cdots \mathrm{O} 23 A$	2.81 (2)	105.4 (8)	OB23..O23B1	2.56 (5)	107 (1)
			$\mathrm{OB} 23 \cdots \mathrm{O} 23 B 2$	2.63 (4)	101 (1)
OA24...O36A	2.75 (7)	100 (1)	OB24...O24B	2.71 (2)	97 (1)
OA24...O24A	2.81 (4)	92 (1)			
OA24...O34A1	2.9 (1)	108 (2)			
OA26...O26A1	2.73 (4)	105 (3)	OB26..O26B1	2.65 (4)	102 (1)
OA26 \cdots O26A2	2.79 (4)	101.3 (9)	OB26 \cdots O26B2	2.95 (6)	102 (1)
			OB26..O26B3	2.96 (5)	105 (1)
			OB26. $\mathrm{O} 21 B 1$	3.17 (2)	114.7 (8)
OA32 $\cdots \mathrm{O} 32 A$	2.82 (4)	129 (1)	OB32 . O 2683	3.01 (5)	142 (1)
			OB32 . . O32B	3.1 (1)	118 (1)
OA34..O34A1	2.6 (1)	140 (2)	OB34...O22B	2.86 (2)	113 (1)
OB34.. O22A	2.75 (3)	110 (1)			
OB34..O.O34A2	3.06 (7)	99 (1)			
OA35 . . O35A	2.75 (3)	121 (1)	OB35 . ${ }^{\text {O }} 35$ B	2.62 (5)	121 (1)
OA35 . O21A	2.95 (7)	117 (1)	OB35 . O21B1	3.04 (2)	114.7 (8)
OA36..O36A	2.60 (7)	111 (1)	OB36 . $\mathrm{O} 24 B$	2.90 (2)	108 (1)
OA36.. $\mathrm{O} 24 A$	3.01 (3)	109 (1)	OB36 \cdots O22B	3.06 (3)	143.3 (9)
OA36..O34A1	2.9 (1)	127 (2)			
OA37...O35A	3.07 (5)	138 (1)	OB37...O35B	2.84 (5)	138 (1)
			OB37...O23B1	3.00 (5)	113 (1)
$\mathrm{O} A 61 a \cdots \mathrm{O} 61 B 1$	2.83 (1)	99 (1)	OB61 . ${ }^{\text {O6 }}$ 61 1	2.70 (1)	110.3 (7)
			OB61 \cdots O61B2	2.96 (3)	94.5 (9)
$\mathrm{O} A 61 b \cdots \mathrm{O} 61 A$	2.24 (8)	145 (2)			
$\mathrm{O} A 61 b \cdots \mathrm{O} 4 A a 2$	2.77 (3)	118 (1)			
OA62 . - $063 B b 2$	2.99 (3)	134 (1)	OB62 . ${ }^{\text {O67 }}$ A	2.76 (1)	112.9 (7)
OA63 . ${ }^{\text {O } 63 A}$	2.70 (1)	120.3 (7)	OB63a . $\mathrm{O} 63 B a$	2.61 (3)	125 (1)
			OB63a \cdots O64Aa 1	2.72 (3)	108 (1)
			OB63a . O 6683	2.83 (3)	120 (1)
			OB63b . O63Bb1	2.68 (5)	115 (2)
			OB63b \cdots O63Bb2	2.78 (4)	132 (2)
OA64a \cdots O64Aa1	2.60 (3)	118 (1)	OB64...O64B	2.58 (8)	134 (2)
OA64a \cdots O64Aa2	2.74 (2)	120 (1)	OB64. . O61B1	2.85 (1)	105.9 (9)
OA64a . . $063 B a$	2.88 (2)	102 (1)	OB64...O61A	2.93 (8)	94 (1)
	2.93 (6)	108 (3)			
OA64b \cdots O63Ba	3.00 (6)	101 (3)			
OA65 . . O65A1	2.48 (7)	132 (2)	OB65 . $\mathrm{O} 65 B$	2.80 (2)	130.0 (9)
OA65 . ${ }^{\text {O65 }}$ A2	2.86 (2)	126 (2)			
OA66 . . $063 A$	2.75 (1)	109.4 (9)	OB66 . . 066 B1	2.70 (7)	138 (1)
OA66 . .O66A_1	2.98 (6)	109 (1)	OB66 \cdots O66 ${ }^{\text {O }}$	2.73 (9)	114 (2)
О $A 66 \cdots$. ${ }^{\text {O66 }}$ A2	3.06 (5)	93 (1)	OB66 . . O66B3	2.77 (2)	109 (1)
О $A 66 \cdots$. ${ }^{\text {O66 }}$ A3	3.17 (7)	114 (1)	OB66 \cdots O66B4	3.04 (8)	121 (1)
OA67.. O67A	2.72 (1)	118.9 (7)	OB67a . O 67 Ba 1	2.75 (4)	123 (1)
			$\mathrm{O} B 67 a \cdots \mathrm{O} 67 \mathrm{Ba} 2$	2.76 (9)	131 (2)
			OB67a $\cdots \mathrm{O} 63 B a$	2.91 (2)	104 (1)
			OB67b \cdots O63Ba	2.96 (4)	98 (1)
			OB67b \cdots O66B3	3.13 (4)	135 (1)

3.5. Geometry of the host molecules

The host molecules possess near sevenfold symmetry, the pyranose rings having the ${ }^{4} C_{1}$ conformation as in the β CD/DBA complex (Table $3 b$). The same also holds for the intramonomer hydrogen bonds, $\mathrm{O} 3 n \cdots \mathrm{O} 2(n+1)$, stabilizing the $\beta \mathrm{CD}$ macrocycle [average O3n... O2 $(n+1)$ distances $2.80(3) \AA$; angles $\mathrm{C} 3 n-\mathrm{O} 3 n \cdots \mathrm{O} 2(n+1) \quad[$ average $\left.116.4(2)^{\circ}\right]$ and $\mathrm{O} 3 n \cdots \mathrm{O} 2(n+1)-$ $\mathrm{C} 2(n+1)$ [average $118.5(5)^{\circ}$]. The $\beta \mathrm{CD}$ dimer is formed via $\mathrm{O} A 3 n \cdots \mathrm{OB3}(8-n)$ hydrogen bonds with an average distance 2.80 (6) \AA. Angles $\mathrm{C} A 3 n-\mathrm{O} A 3 n \cdots \mathrm{OB} 3(8-n)$ and $\quad \mathrm{O} A 3 n \cdots \mathrm{OB3}(8-n)-$ CB3 $(8-n)$ have mean values 117.7 (4) and 117.5 (4) ${ }^{\circ}$, respectively.

The conformations of the primary hydroxy groups are shown in Table 3(b): residues G6 of monomer A and G4 of monomer B exhibit the (+)-gauche conformation and point inwards. Monomer A has three disordered hydroxy groups with major (-)-gauche and minor $(+)$-gauche conformations, those of residues G2, G4 and G7 [occupancies for the (-)-gauche conformer 89, 90 and 75%, respectively], and monomer B has two, on G1 and G2 [occupancies for the (-)-gauche conformer 86 and 91%, respectively]. The remaining hydroxy groups have the (-)-gauche conformation.

3.6. Guest geometry and interactions with its environment

The two guest molecules a and b enclosed within each $\beta C D$ dimer exhibit dihedral angles between the phenyl rings $52.7(7)$ and $40(1)^{\circ}$, respectively. The number of interactions of the guests with their envir-

As in the DBA complex two β CD hosts enclose two guest molecules (a and b). The numbering scheme for $\beta C D$ (conventions as in the $\beta \mathrm{CD} / \mathrm{DBA}$ complex) and the guest molecules is given in Fig. 6 (Johnson, 1976). The present structure belongs to space group $P 2_{1}$ and exhibits the screwchannel (SC) packing mode (Fig. 7; Jones \& Kjeldgaad, 1993). The dimer's sevenfold axis forms an angle of approximately 10° with the stacking axis and the lateral displacement between two consecutive β CD dimers along the channel is 2.7 Å.
onment is very limited (Table $4 b$): The only close contact of the guests' amino groups is between $\mathrm{N} 1 B$ (which is pointing towards the solvent) and the water molecule O63A3 ($2.6 \AA$). This same group has a weak interaction ($3.15 \AA$) with the disordered hydroxy group $\mathrm{O} B 62 b$ of the hosting macrocycle pointing inwards. The amino group, emerging from the other primary side of the $\beta C D$ dimer, points towards the guest phenyl ring of a consecutive dimer almost perpendicularly (smallest distance $\mathrm{N} 1 A \cdots \mathrm{C} 3 B=3.42 \AA$) and interacts weakly with the hydroxy group OB 64 of the non-hosting macrocycle.

At the $\beta C D$ secondary interface the remaining end-amino groups approach in a parallel fashion and exhibit $\pi \cdots \pi$ overlap (minimum distance $3.62 \AA$). Therefore, in a way quite analogous to the DBA complex the interactions among the guests in the deformed channel are alternately weak $\pi \cdots \pi$ and vertical NH $\cdots \pi$.

The twisted conformation of the biphenyl group is in contrast to that observed for crystals of neat biphenyl (Charbonneau \& Delugeard, 1977) or biphenyl derivatives (Graham et al., 1989) that exhibit almost planar conformation. However, the dihedral angles between the phenyl rings are similar to that of 4-amino-4'-nitrobiphenyl both in its inclusion complex with $\beta \mathrm{CD}$ and as an isolated molecule as determined by $a b$ initio quantum mechanical calculations (Brett et al., 1999). Apparently the $\beta \mathrm{CD}$ cavity isolates the molecules and forbids the $\pi \cdots \pi$ stacking that results in the biphenyl planarity observed in crystals of the neat compound.

3.7. Hydrogen-bonding network and solvent molecules

There are seven direct hydrogen bonds among hydroxy groups of adjacent host dimers (Table $5 b$), of which five bind hydroxy groups in the two-dimensional layers: three along the a axis, $\mathrm{O} A 65 \cdots \mathrm{O} A 62 a, \mathrm{O} B 66 \cdots \mathrm{O} B 63$ and $\mathrm{O} A 22 \cdots \mathrm{O} B 23$, and two along the c axis, $\mathrm{O} A 24 \cdots \mathrm{O} B 21$ and $\mathrm{O} A 67 a \cdots \mathrm{O} A 64 a$.

There are 24.70 (6) water molecules in the asymmetric unit distributed over 55 sites around the β CD dimer and 49 of them

Figure 7
Packing of the $\beta \mathrm{CD} / \mathrm{BNZ}$ complex.
are within hydrogen-bonding distance of O atoms of the hydroxy groups, as shown in Table 7. The water sites have been labeled as in the previous complex and hydrogenbonding distances of up to $3.25 \AA$ and $\mathrm{C}-\mathrm{O}(\mathrm{H}) \cdots \mathrm{O}$ (water) angles of up to 145° are assumed. Water molecules at six positions interact only among themselves.

4. Concluding remarks on the crystal packing of the complexes

As mentioned in $\S 1, \beta C D$ dimers crystallize in four different packing modes, as shown in Fig. 8. All have the common feature that they consist of close-packed layers of $\beta \mathrm{CD}$ dimers and are generated by the two-dimensional invariable layers' different relative positioning. In the CH mode the dimer's sevenfold axis forms an angle of approximately 10° with the stacking axis. The two-dimensional layers stack in parallel so that the dimers align almost on top of each other to form channels, slightly deformed in the interface between dimers (interdimer interface). The channels are hydrophobic and the guests inside them are shielded from the water environment. The lateral displacement between two consecutive $\beta C D$ dimers along the channel is $2.7 \AA$. On the contrary, in CB mode the lateral distance between two dimers of successive layers is $8.9 \AA$, every dimer being surrounded by solvent molecules. The primary faces and therefore the guest are exposed to the polar environment of water molecules and neighboring hydroxy groups. The dimer's sevenfold axis forms an angle of approximately 10° with the stacking axis, but the two-dimensional layers are related by a twofold screw axis and they are not parallel (dihedral angle of 20°). In the IM mode, a case between the CH and CB modes, adjacent layers are parallel, but the dimer's sevenfold axis forms an angle of $\simeq 20^{\circ}$ with the stacking axis. Consequently, dimers are far from exactly aligned, their lateral displacement being $6 \AA$ (the inner diameter of the primary face of $\beta \mathrm{CD}$). Thus, a breaking of the channel is observed that leaves parts of the guests free to interact with hydroxy groups of adjacent hosts, as well as with water molecules. Finally, in the SC mode, although the lateral displacement between two consecutive $\beta \mathrm{CD}$ dimers along the channel is only $2.7 \AA$ as in the CH mode, the dimer's sevenfold axis forms an approximate angle of 10° with the stacking axis but the two-dimensional layers are related by a twofold screw axis and they are not parallel, therefore, the guests interact with water molecules and hydroxy groups of adjacent hosts channels.

The guest(s), emerging from the two primary faces of the dimer, is(are) situated between the previously mentioned, practically invariant layers and therefore plays a crucial role in the packing. Guests with hydrophilic, hydrogen-bond forming group(s) like hydroxy groups seem to favor extensive hydration of the primary faces and induce CB packing. On the contrary, hydrophobic groups at the primary faces favor channel formation in order to be isolated from the aqueous environment in the periphery of the $\beta C D$ barrel. Our experience is that polar groups with a self-association tendency, such as the carboxylic group (Rontoyianni et al.,

CH mode

CB mode

IM mode

β CD/DBA complex

Figure 8
Schematic view of the packing modes of $\beta \mathrm{CD}$ dimers. In the upper part of the various modes each $\beta \mathrm{CD}$ monomer is represented by the heptagon of the O4 atoms. In the lower part the lateral displacement between two consecutive $\beta \mathrm{CD}$ dimers is shown and each heptagon represents a $\beta \mathrm{CD}$ dimer.

1994; Rontoyianni \& Mavridis, 1996; Makedonopoulou et al., 1998, 1999; Makedonopoulou \& Mavridis, 2000, 2001), or polar groups with an intermediate tendency to be hydrated favor IM packing. It seems that the latter is true for the SC mode, as shown from the complexes crystallized in SC (Hamilton \& Chen, 1988a,b; Caira et al., 1996, 2002; Brett et al., 1999; Sanchez-Ruiz et al., 1999). However, it is difficult to deduce some clear relation between guest nature and the IM and SC packing modes.

The present guest molecules are end-substituted aromatic diamines differing in their length and flexibility. Summarizing their similarities we observe:
(i) They both form host:guest (2/2) complexes exhibiting limited host-guest close interactions.
(ii) Two parallel aryls of guests in the elongated cavity are stabilized by $\pi \cdots \pi$ interactions, whereas between $\beta \mathrm{CD}$ dimers there are vertical NH $\cdots \pi$ contacts.
(iii) The axes of two consecutive dimeric complexes (Figs. 7 and 4) form an angle close to 20° and have a lateral displacement $\simeq 2.45 \AA$, both of which characterize the SC mode.
Indeed, the $\beta \mathrm{CD} / \mathrm{BNZ}$ complex crystallizes in $P 2_{1}$, in the SC mode, but $\beta \mathrm{CD} / \mathrm{DBA}$ crystallizes in $C 2$ with dimensions not resembling any of the packing modes described so far (Table 2). However, if we perform the transformation $\mathbf{a}^{\prime}=(\mathbf{a}-$ b) $/ 2, \mathbf{b}^{\prime}=-\mathbf{c}$ and $\mathbf{c}^{\prime}=(\mathbf{a}+\mathbf{b}) / 2$ we obtain the unit cell $\mathbf{a}^{\prime}=15.48$, $\mathbf{b}^{\prime}=33.31, \mathbf{c}^{\prime}=15.48 \AA, \beta=102.77^{\circ}$, which is isostructural to the SC mode unit cell. Therefore, we suggest that although the packing of the $\beta C D$ dimers in $\beta C D / D B A$ is the same as in the $\beta C D / B N Z$ and other SC mode complexes, the presence of the guest molecule in more than one conformation differentiates the lattice and the space group (Fig. 8).

It has been mentioned above that complexes belonging to the same mode are isostructural, a fact that permits us to determine the crystal packing of unknown complexes just by knowledge of their space group and unit-cell dimensions. Recently, however, there have been reports that close correspondence of unit-cell dimensions is a necessary, but not sufficient, condition for isostructurality. There are two cases of complexes in $P 2_{1}$ and cell dimensions very close to those of the SC mode (Table 2) with dimers displaced laterally more than in the SC mode:
(i) In the $\beta C D /$ paroxetin complex (Caira et al., 2002) the lateral displacement between dimers in adjacent layers is more than $6 \AA$
(ii) In the $\beta \mathrm{CD} /$ adamantanone complex (Sanchez-Ruiz et al., 1999) the corresponding displacement is even larger, close to that of the CB mode.
In both cases this difference is due to the location of the dimers with respect to the 2_{1} axis parallel to the unique axis \mathbf{b} and it has been attributed to the host/guest ratio (Caira et al., 2002). In the $\beta \mathrm{CD} /$ paroxetin complex the host/guest ratio is 2:1 and in $\beta \mathrm{CD} /$ adamantanone it is 2:2 nominally, but the guest is disordered, distributed over three positions. It is interesting to note that the unit-cell transformation $\mathbf{a}^{\prime}=\mathbf{a}-\mathbf{c}, \mathbf{b}^{\prime}=\mathbf{c}-\mathbf{a}$ and $\mathbf{c}^{\prime}=\mathbf{b}$ leads to $\mathbf{a}^{\prime} \simeq 19, \mathbf{b}^{\prime}=24, \mathbf{c}^{\prime}=32 \AA$ and α, β and γ nearly 90°, which is the unit cell characterizing the CB struc-

Table 7
Hydrogen bonds between $\beta \mathrm{CD}$ hydroxyls, $\mathrm{OA}(\mathrm{B}) n m$, and water molecules, $\mathrm{OnmA(B)}$, in the $\beta \mathrm{CD} /$ BNZ inclusion complex.

Molecule A	$\begin{aligned} & \mathrm{O} \cdots \mathrm{O} \\ & \text { distance }(\AA) \end{aligned}$	$\begin{aligned} & \mathrm{C}-\mathrm{O} \cdots \mathrm{O} \\ & \text { angle }\left(^{\circ}\right) \end{aligned}$	Molecule B	$\begin{aligned} & \mathrm{O} \cdots \mathrm{O} \\ & \text { distance }(\AA) \end{aligned}$	$\begin{aligned} & \mathrm{C}-\mathrm{O} \cdots \mathrm{O} \\ & \text { angle }\left({ }^{\circ}\right) \end{aligned}$
$\mathrm{O} A 21 \cdots \mathrm{O} 21 A$	2.76 (3)	95 (4)			
			OB22 $\cdots \mathrm{O} 22 \mathrm{B1}$	2.65 (6)	101 (1)
			OB22 . O $222 B 2$	2.99 (6)	106 (1)
				3.07 (4)	94 (1)
OA23...O23A1	2.84 (5)	102 (1)			
$\mathrm{O} A 23 \cdots \mathrm{O} 23 A 2$	2.95 (3)	94 (1)			
OA23 . - $225 A 1$	3.10 (2)	121.9 (9)			
			OB24.. O24B	2.71 (1)	113.1 (7)
			OB24 . . O33B	3.16 (4)	139 (1)
			OB24.. O26B	3.19 (4)	95 (1)
OA25 . O25A1	2.65 (2)	108.4 (8)	OB25..O25B	2.67 (3)	98 (1)
OA25 . O $33 B$	2.90 (4)	114 (1)	OB25 . O37B	2.9 (1)	112 (2)
$\mathrm{O} A 25 \cdots \mathrm{O} 25 A 2$	3.02 (7)	96 (1)			
OA26. ${ }^{\text {O} 26 A 1}$	2.72 (6)	91 (1)	OB26..O26B1	2.77 (4)	99 (1)
$\mathrm{O} A 26 \cdots \mathrm{O} 26 A 2$	2.73 (4)	110 (1)	OB26 \cdots O33 ${ }^{\text {O }}$	3.11 (4)	111 (1)
OA27...O27A1	2.60 (5)	103 (1)	OB27..O27B	2.77 (4)	93 (1)
$\mathrm{O} A 27 \cdots \mathrm{O} 27 A 2$	2.70 (2)	105.9 (9)	OB27..O32B	2.87 (5)	108 (1)
$\mathrm{O} A 31 \cdots \mathrm{O} 26 A 2$	2.74 (9)	116 (1)	OB31 $\cdots \mathrm{O} 24 B$	2.85 (2)	115.1 (8)
$\mathrm{O} A 31 \cdots \mathrm{O} 32 B$	2.91 (5)	140 (1)			
$\mathrm{O} A 31 \cdots \mathrm{O} 26 A 1$	3.11 (7)	99 (1)			
OA32 . O $33 B$	2.74 (4)	129 (1)	OB32 . O $32 B$	2.72 (5)	121 (1)
$\mathrm{O} A 32 \cdots \mathrm{O} 25 A 1$	2.88 (2)	121.0 (8)	$\mathrm{O} B 32 \cdots \mathrm{O} 26 A 2$	2.92 (4)	145 (1)
			OB32 . O27B	2.93 (4)	104 (1)
OA33 . . $221 A$	2.84 (2)	116 (1)	OB33 . O33 B	2.65 (4)	129 (1)
OA33 . O37B	2.9 (1)	143 (2)			
$\mathrm{O} A 34 \cdots \mathrm{O} 27 A 1$		112 (1)			
			OB35 . . O35B1	2.77 (5)	128 (1)
				2.97 (6)	
OA36..O36A	2.86 (7)	120 (1)			
OA36 \cdots O22B2	3.01 (5)	143 (1)			
			$\mathrm{OB} 37 \cdots \mathrm{O} 37 B$	$2.8 \text { (1) }$	127 (2)
			$\mathrm{O} B 37 \cdots \mathrm{O} 25 B$	2.84	109 (1)
O $A 61 \cdots \mathrm{O} 61 A 1$	2.4 (1)	128 (3)	OB61a . $\mathrm{O} 61 B a$	2.78 (2)	126 (1)
			$\mathrm{O} B 61 a \cdots \mathrm{O} 61 \mathrm{Bb} 1$	2.87 (9)	98 (2)
OA61 . . $\mathrm{O} 61 B b 2$	2.71 (6)	112 (1)			
OA61 . ${ }^{\text {O65 }}$ A2	2.80 (1)	104.9 (9)			
$\mathrm{O} A 61 \cdots \mathrm{O} 61 A 2$	2.82 (8)	114 (2)			
OA61 . $\mathrm{O} 65 A 1$	2.93 (7)				
$\mathrm{O} A 61 \cdots \mathrm{O} 61 B b 1$	3.1 (1)	88 (2)			
			OB61b \cdots O61Bb1	2.5 (1)	119 (5)
			OB61b \cdots O61 ${ }^{\text {a }}$ 2	2.5 (1)	131 (5)
			$\mathrm{O} B 61 b \cdots \mathrm{O} 61 \mathrm{Bb3}$	2.6 (1)	116 (5)
			OB61b . $\mathrm{O} 67{ }^{\text {a }}$	2.9 (1)	133 (5)
			OB61b . O61Bb4	3.0 (1)	99 (4)
OA62 \cdots O62 A			OB62 . O $62 B a 1$	2.78 (5)	141 (1)
OA62 \cdots O65A3	3.19 (2)	128 (1)	OB62 . O66B	2.79 (2)	110 (1)
			OB62 . . O62Bb3	3.15 (4)	94 (1)
			OB62 . O 62 Ba 2	3.18 (7)	109 (1)
			OB62b \cdots O62Bb1	2.99 (9)	137 (4)
			OB62b . O 62 Bb 2	3.07 (8)	117 (4)
			OB62b \cdots O62Bb3	3.13 (7)	98 (3)
	$2.74(2)$	$112 \text { (1) }$	OB63 . ${ }^{\text {O } 63 B}$	2.72 (1)	117.4 (8)
OA63 . $\mathrm{O} 63 A 2$	2.88 (8)	135 (1)			
OA63 . . O63A3	2.8 (1)	112 (2)			
OA63 . O63A4	2.94 (5)	118 (1)			
O $A 64 \cdots$. $064 A$	2.73 (2)	124 (1)	OB64 \cdots O65A2	2.79 (1)	103 (1)
OA64...O67A2	2.96 (6)	100 (1)			
OA65 . ${ }^{\text {O65 }}$ A1	2.30 (1)	101 (4)	OB65 \cdots O67Ab	3.04 (3)	136 (1)
OA65 . O65 A2	2.73 (1)	111.7 (9)			
OA65 . - $665 A 3$	2.99 (2)	101 (1)			
OA66 . . $063 B$	2.74 (1)	110.6 (9)	OB66 . . O66B	2.73 (2)	122.4 (1)
OA67a \cdots O67Aa	2.67 (3)	106 (1)	OB67 . . O67Aa	2.69 (3)	121 (1)
$\mathrm{O} A 67 a \cdots \mathrm{O} 67 A{ }^{2}$	2.78 (6)	122 (1)	OB67...O67B1	2.70 (4)	126 (1)
$\mathrm{O} A 67 a \cdots \mathrm{O} 63 A 1$	2.81 (3)	120 (1)	OB67...O67B2	2.81 (7)	104 (2)
			OB67 . . O67Aa 2	2.98 (6)	105 (1)
			OB67 . . O61Bb3	3.00 (7)	104 (1)
$\mathrm{O} A 67 b \cdots \mathrm{O} 67 A b$	2.74 (5)	125 (2)			

tures and it has the same symmetry, if the guest is not taken into account. Therefore, we can suggest that both structures are pseudo-CB having packing arrangements and symmetry similar to CB. Because of the guest molecule, the lattice cannot have the exact symmetry of space group $C 222_{1}$ and acquires a lower symmetry, $P 2_{1}$, that does not require the two halves of the dimer complex to be related by a twofold axis.

The above discussion shows that the guest molecule not only influences changes of one packing mode to the other, but dictates sometimes subtler variations as in the case of the present β CD/DBA complex. However, the crystal packing of $\beta C D$ dimers is determined by the dimer's structure and properties, especially the fact that dimers form C-centered or pseudo C-centered two-dimensional layers with two orthogonal axes of specific dimensions. This explains the fact that the lattices observed up to now, including the present, can be transformed one into another, if the symmetry of the guest is ignored. Thus, the isostructurality of $\beta \mathrm{CD}$ dimeric complexes is not always a sufficient condition in order to predict their crystal packing.

We thank Professors M. R. Caira, University of Cape Town, and D. Mentzafos, Agricultural University of Athens, for helpful discussions. The scholarship by NCSR Demokritos is kindly acknowledged by PG.

References

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., de Gelder, R., Israel, R. \& Smits, J. M. M. (1994). The DIRDIF94 Program System. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Botsi, A., Yannakopoulou, K., Perly, B. \& Hadjoudis, E. (1995). J. Org. Chem. 60, 4017-4023.
Brett, T. J., Shuncheng, L., Coppens, P. \& Stezowski, J. J. (1999). Chem. Commun. pp. 551-552.
Caira, M. R., De Vries, E., Nassimbeni, L. R. \& Jacewicz, V. W. (2002). J. Inclus. Phenom. Macromol. Chem. In the press.

Caira, M. R., Griffith, V. J., Nassimbeni, L. R. \& Van Oudtshoorn, B. (1996). Supramol. Chem. 7, 119-124.

Charbonneau, G.-P. \& Delugeard, Y. (1977). Acta Cryst. B33, 15861588.

Dodds, D. R. (1999). PhD thesis, University of Cape Town, South Africa.
Eliadou, K., Yannakopoulou, K., Rontoyianni, A. \& Mavridis, I. M. (1999). J. Org. Chem. 64, 6217-6226.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Giastas, P., Mourtzis, N., Yannakopoulou, K. \& Mavridis, I. M. (2003). J. Inclus. Phenom. Macromol. Chem. In the press.
Graham, E. M., Miskowski, V. M., Perry, J. W., Coulter, D. R., Stiegman, W. P., Schaeffer, W. P. \& Marsh, R. E. (1989). J. Am. Chem. Soc. 111, 8771-8779.
Hamilton, J. A. \& Chen, L. (1988a). J. Am. Chem. Soc. 110, 43794391.

Hamilton, J. A. \& Chen, L. (1988b). J. Am. Chem. Soc. 110, 59335841.

Harata, K. (1998). Chem. Rev. 98, 1803-1827.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Jones, T. A. \& Kjeldgaad, M. (1993). ' O ' Molecular Modelling Program. Version 5.9. Upsala, Sweden.
Kahr, B., Mitchel, C. A., Chance, J. M., VernonClark, R., Gantzel, P., Baldridge, K. K. \& Siegel, J. S. (1995). J. Am. Chem. Soc. 117, 44794482.

Kraulis, P. (1991). J. Appl. Cryst. 24, 946-950.
Le Bas, G. \& Tsoucaris, G. (1994). Supramol. Chem. 4, 1316.

Makedonopoulou, S. \& Mavridis, I. M. (2000). Acta Cryst. B56, 322331.

Makedonopoulou, S. \& Mavridis, I. M. (2001). Carbohydr. Res. 335, 213-220.
Makedonopoulou, S., Mavridis, I. M., Yannakopoulou, K. \& Papaioannou, J. (1998). J. Chem. Soc. Chem. Commun. pp. 21332134.

Makedonopoulou, S., Tulinsky, A. \& Mavridis, I. M. (1999). Supramol. Chem. 11, 73-81.
Mavridis, I. M., Hadjoudis, E. \& Tsoucaris, G. (1991). Carbohydr. Res. 220, 11-21.
Mentzafos, D., Mavridis, I. M., Le Bas, G. \& Tsoucaris, G. (1991). Acta Cryst. B47, 746-757.
Rontoyianni, A. \& Mavridis, I. M. (1996). Acta Cryst. C52, 22772281.

Rontoyianni, A. \& Mavridis, I. M. (1999). Supramol. Chem. 10, 213218.

Rontoyianni, A., Mavridis, I. M., Hadjoudis, E. \& Duisenberg, A. J. M. (1994). Carbohydr. Res. 252, 19-32.

Ross, J.-N. \& Wardell, J. (1994). Acta Cryst. C50, 976-977.
Saenger, W. (1980). Angew. Chem. Int. Ed. Engl. 19, 344362.

Saenger, W. (1985). Israel J. Chem. 25, 43-50.
Sanchez-Ruiz, X., Alvarez-Larena, A., Jaime, C., Piniella, J. F., Redondo, J., Virgili, A., Sanchez-Ferrando, F., Germain, G. \& Baert, F. (1999). Supramol. Chem. 10, 219-223.
Sheldrick, G. M. (1997). SHELX97. University of Göttingen, Germany.
Strouse, C. (2002). Unpublished.
Szejtli, J. (1998). Chem. Rev. 98, 1743-1753.
Uekama, K., Hirayama, F. \& Irie, T. (1998). Chem. Rev. 98, 20452076.

Yannakopoulou, K., Ripeester, J. A. \& Mavridis, I. M. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 1639-1644.

[^0]: ${ }^{1}$ Supplementary data for this paper are available from the IUCr electronic archives (Reference: NS0010). Services for accessing these data are described at the back of the journal.

